M.Sc. Part I, Information Technology Syllabus





Janardan Bhagat Shikshan Prasarak Sanstha's

# CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

## **Program: Master's in Science (M. Sc.)**

## **Information Technology**

**SYLLABUS** (Approved in the Academic council meeting dated 27/06/2023)

## M. Sc. Information Technology

Revised as per NEP 2020 Choice Based Credit System (60:40) w.e.f. Academic Year 2023-2024 MASTER'S IN SCIENCE (M. Sc.)

1

| SR.<br>NO. | After completion of B.Sc. program students will acquire                                                                                                   | Graduate<br>Attribute       |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| PO1        | The knowledge of the disciplines and in-depth and                                                                                                         | Disciplinary                |  |  |
|            | extensive knowledge, understanding and skills in a specific field of interest.                                                                            | knowledge                   |  |  |
| PO2        | An ability to develop and conduct experiments, analyse,<br>and interpret data and use scientific judgment to draw<br>conclusions                          | Scientific reasoning        |  |  |
| PO3        | An ability to use current technology, and modern tools necessary for creation, analysis, dissemination of information.                                    | Digital literacy            |  |  |
| PO4        | Innovative, professional, and entrepreneurial skills needed in various disciplines of science.                                                            | Life-long learning          |  |  |
| PO5        | An ability to achieve high order communication skills.                                                                                                    | Communication skills        |  |  |
| PO6        | An ability to collect, analyse and evaluate information<br>and ideas and apply them in problem solving using<br>conventional as well as modern approaches | Problem solving             |  |  |
| PO7        | A sense of social responsibility; intellectual and practical skills and demonstration of ability to apply it in real-world settings.                      | Reflective thinking         |  |  |
| PO8        | An ability to engage in independent and life-long<br>learning through openness, curiosity, and a desire to<br>meet new challenges.                        | Life-long learning          |  |  |
| PO9        | A capacity to relate, collaborate, and lead others, and to<br>exchange views and ideas to work in a team to achieve<br>desired outcomes                   | Teamwork                    |  |  |
| PO10       | An ability to function effectively as an individual, and<br>as a member or leader in diverse teams, and in<br>multidisciplinary settings.                 | Leadership                  |  |  |
| PO11       | An ability to understanding values, ethics, and morality<br>in a multidisciplinary context.                                                               | Moral and ethical awareness |  |  |

# **Programme Outcomes**

|      | After completing the programme in Information<br>Technology, Student will be able to:           |
|------|-------------------------------------------------------------------------------------------------|
| PSO1 | Apply IT in the field of Data Science, AI, Networking, Security and Cloud Computing.            |
| PSO2 | Design solutions for complex IT problems.                                                       |
| PSO3 | Develop research, investigation skills and achieve professional competency in the field of I.T. |

## **Program Specific Outcomes**

### **Preamble:**

The M.Sc. Information Technology programme is started with an aim to make the learners employable and impart industry oriented training.

The main objectives of the course are:

- To think analytically, creatively and critically in developing robust, extensible and highly maintainable technological solutions to simple and complex problems.
- To apply their knowledge and skills to be employed and excel in IT professional careers and/or to continue their education in IT and/or related post graduate programmes.
- To be capable of managing complex IT projects with consideration of the human, financial and environmental factors.
- To work effectively as a part of a team to achieve a common stated goal.
- To adhere to the highest standards of ethics, including relevant industry and organizational codes of conduct.
- To communicate effectively with a range of audiences both technical and non-technical.
- To develop an aptitude to engage in continuing professional development.

## **Examination Scheme**

#### **Choice Based Credit System (CBCS)**

#### Revised Scheme of Examination

The performance of the learners shall be evaluated into two components. The learner's Performance shall be assessed by Internal Assessment with 40% marks in the first component by conducting the Semester End Examinations with 60% marks in the second component. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

#### A) Internal Assessment: 40 %

#### 40 Marks

| Sr.<br>No. | Particular                                                                                                                                                                                                                     |          | Marks    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| 01         | One periodical class test examination to be                                                                                                                                                                                    |          | 20 Marks |
| 02         | conducted in the given semesterOne case study/ project with presentation based on curriculum to<br>be assessed by the teacher concerned                                                                                        |          | 15 Marks |
|            | Presentation                                                                                                                                                                                                                   | 10 Marks |          |
|            | Written Document                                                                                                                                                                                                               | 05 Marks |          |
| 03         | Active participation in routine class instructional deliveries and<br>overall conduct as a responsible learner, mannerism and articulation<br>and exhibit of leadership qualities in organizing related academic<br>activities |          | 05 Marks |

- ✤ Maximum Marks: 20
- Duration: 40 Minutes

| Particular                                                                                                                                          | Marks    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in<br>One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each) | 10 Marks |
| Answer in Brief (Attempt any Two of the Three)<br>(5 Marks each)                                                                                    | 10 Marks |

## **Question Paper Pattern for Semester End Examination**

• Duration: The examination shall be of 2.5 hours duration.

## **Question Paper Pattern**

#### Theory question paper pattern

- 1. There shall be five questions each of 12 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

#### > Passing Standard

The learners to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of Grade D, wherever applicable, to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

| Sr. No | Particular         |          | Marks    |
|--------|--------------------|----------|----------|
|        | Practical          |          |          |
|        | Practical Question | 40 Marks |          |
| 01     | Journal            | 5 Marks  | 50 Marks |
|        | Viva               | 5 Marks  |          |

### **Question Paper Pattern for Practical Examination**

| Sr. No.  | Heading                                           | Particulars                                                                                                                                 |
|----------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <u>1</u> | Title of Course<br>Eligibility for Admission      | Information Technology(a) Student securing minimum<br>45% marks at the three years<br>B.Sc. (IT) degree in<br>Information Technology of<br> |
| 3        | Passing marks                                     | 40%                                                                                                                                         |
| 4        | Ordinances/Regulations (if any)                   |                                                                                                                                             |
| 5        | No. of Semesters                                  | Two                                                                                                                                         |
| 6        | Level                                             | P.G.                                                                                                                                        |
| 7        | Pattern                                           | Semester (60:40)                                                                                                                            |
|          |                                                   |                                                                                                                                             |
| 8 9      | Status<br>To be implemented from<br>Academic year | New 2023-2024                                                                                                                               |

### Choice Based Credit System (CBCS) M. Sc. Information Technology Syllabus To be implemented from the Academic year 2023-2024

| No.<br>of<br>Courses | Semester I                                                                            | Credits | No.<br>of Courses | Semester II                                                                                             | Credits |
|----------------------|---------------------------------------------------------------------------------------|---------|-------------------|---------------------------------------------------------------------------------------------------------|---------|
| А                    | Discipline Specific Course (Majo                                                      | r)      | Α                 | Discipline Specific Course (Major)                                                                      |         |
| 1                    | Data Science                                                                          | 04      | 1                 | Big Data Analytics                                                                                      | 04      |
| 2                    | Image processing                                                                      | 04      | 2                 | Modern Networking                                                                                       | 04      |
| 3                    | Soft Computing Techniques                                                             | 04      | 3                 | Natural Language Processing                                                                             | 04      |
| 4                    | Practical : Practical of Data<br>Science + Practical of Image<br>Processing           | 02      | 4                 | Practical: Practical of Big<br>Data Analytics + Practical of<br>Modern Networking                       | 02      |
| В                    | Discipline Specific Course (Elective)<br>(Students will select any 1 out of 2)        |         | В                 | Discipline Specific Course (Elective)<br>(Students will select any 1 out of 2)                          |         |
| 5                    | Cloud Computing                                                                       | 02      | 5                 | Microservices Architecture                                                                              | 02      |
| 5                    | Ethical Hacking                                                                       | 02      | 5                 | Data Security                                                                                           | 02      |
| 6                    | Practical: Practical of Cloud<br>Computing + Practical of Soft<br>Computing Technique | 02      | 6                 | Practical : Practical of<br>Microservices Architecture +<br>Practical of Natural Language<br>Processing | 02      |
| С                    | Discipline Specific Course(Minor                                                      | r)      | С                 | Discipline Specific Course(Min                                                                          | nor)    |
| 7                    | Research Methodology                                                                  | 04      |                   | -                                                                                                       |         |
|                      |                                                                                       |         | D                 | <i>OJT/FP/CEP/RP</i>                                                                                    |         |
|                      |                                                                                       |         | 7                 | On Job Training/ Research<br>Project                                                                    | 04      |
|                      | Total Credits                                                                         | 22      |                   | Total Credits                                                                                           | 22      |

### **SEMESTER I**

| Course  | Course Type               | Course Title                            | Credit |
|---------|---------------------------|-----------------------------------------|--------|
| Code    |                           |                                         |        |
| PIT1DST | Major Subject I           | Data Science                            | 04     |
| PIT1IPT | Major Subject II          | Image Processing                        | 04     |
| PIT1SCT | Major Subject III         | Soft Computing Techniques               | 04     |
| PIT1PR1 | Major Practical           | Practical : Practical of Data Science + | 02     |
|         |                           | Practical of Image Processing           | 02     |
| PIT1CCT | Elective 1                | Cloud Computing                         | 02     |
| PIT1EHT | Elective 2                | Ethical Hacking                         |        |
| PIT1PR2 | <b>Elective Practical</b> | Practical: Practical of Cloud Computing |        |
|         |                           | + Practical of Soft Computing           | 02     |
|         |                           | Techniques                              |        |
| PIT1RMT | Minor Subject             | Research Methodology                    | 04     |
|         |                           | Total Credits                           | 22     |

### Choice Based Credit System (CBCS) M. Sc. Information Technology Syllabus To be implemented from the Academic year 2023-2024 SEMESTER II

| Course  | Course Type               | Course Title                                 | Credit |
|---------|---------------------------|----------------------------------------------|--------|
| Code    |                           |                                              |        |
| PIT2BDA | Major Subject I           | Big Data Analytics                           | 04     |
| PIT2MNT | Major Subject II          | Modern Networking                            | 04     |
| PIT2NLT | Major Subject III         | Natural Language Processing                  | 04     |
| PIT2PR1 | Major Subject II          | Practical: Practical of Big Data Analytics + | 02     |
|         | Practical                 | Practical of Modern Networking               | 02     |
| PIT2MAT | Elective I                | Microservices Architecture                   | 02     |
| PIT2DST | Elective II               | Data Security                                |        |
| PIT2PR2 | <b>Elective Practical</b> | Practical : Practical of Microservices       |        |
|         |                           | Architecture + Practical of Natural Language | 02     |
|         |                           | Processing                                   |        |
| PIT2OJT | OJT/RP                    | On Job Training / Research Project           | 04     |
|         |                           | Total Credits                                | 22     |

## Semester I Major I

| Course Description: M.Sc. (Information Technology) |                |  |
|----------------------------------------------------|----------------|--|
| Semester                                           | Ι              |  |
| Course Name                                        | Data Science   |  |
| Course Code                                        | PIT1DST        |  |
| Credit                                             | 4              |  |
| Hours                                              | 4 Hrs per week |  |

| <b>Course Objectives</b> | Develop in depth understanding of the key technologies in data |
|--------------------------|----------------------------------------------------------------|
|                          | science and business analytics: data mining, machine learning, |
|                          | visualization techniques, predictive modeling, and statistics  |

| Course Outcomes | After completing the course, Student will be able to:                               |
|-----------------|-------------------------------------------------------------------------------------|
|                 | <ol> <li>Explain layered framework and technology stack in data science.</li> </ol> |
|                 | 2) Elaborate management layers in data science.                                     |
|                 | 3) Explain assess supersteps in data science.                                       |
|                 | 4) Utilize transform and report supersteps.                                         |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι               | <ul> <li>Data Science Technology Stack: Data Science Storage Tools, Data Lake, Data Vault, Data Science Processing Tools, Spark, Mesos, Akka, Cassandra, Kafka, Elastic Search, R ,Scala, Python, MQTT.</li> <li>Layered Framework: Definition of Data Science Framework, Cross Industry Standard Process for Data Mining (CRISP-DM), Homogeneous Ontology for Recursive Uniform Schema, The Top</li> </ul> | 15hrs |

M.Sc. Part I. Information Technology Syllabus

|     | Layers of a Layered Framework, Layered Framework for High-Level    |        |
|-----|--------------------------------------------------------------------|--------|
|     | Data Science and Engineering, Business Layer, Utility Layer:       |        |
|     | ~                                                                  |        |
|     | Three Management Layers: Operational Management Layer,             |        |
|     | Processing-Stream Definition and Management, Audit, Balance, and   |        |
|     | Control Layer, Balance, Yoke Solution, Cause-and-Effect, Analysis  |        |
|     | System, Functional Layer, Data Science Process.                    |        |
| II  | Retrieve Superstep : Data Lakes, Data Swamps, Training the Trainer | 15hrs  |
|     | Model, Understanding the Business Dynamics of the Data Lake,       |        |
|     | Actionable Business Knowledge                                      |        |
|     | from Data Lakes, Engineering a Practical Retrieve Superstep,       |        |
|     | Connecting to Other Data                                           |        |
|     | Sources.                                                           |        |
|     | Assess Superstep: Assess Superstep, Errors, Analysis of Data,      |        |
|     | Practical Actions,<br>Engineering a Practical Assess Superstep,    |        |
| III | Process Superstep : Data Vault, Time-Person-Object-Location-       | 15hrs  |
| 111 | Event Data Vault, Data Science Process, Data Science,              | 131118 |
|     | <b>Transform Superstep :</b> Transform Superstep, Building a Data  |        |
|     | Warehouse, Transforming with Data Science, Hypothesis Testing,     |        |
|     | Overfitting and Underfitting, Precision-Recall, Cross-Validation   |        |
|     | Test.                                                              |        |
| IV  | Transform Superstep: Univariate Analysis, Bivariate Analysis,      | 15hrs  |
|     | Multivariate Analysis, Linear Regression, Logistic Regression,     |        |
|     | Clustering Techniques, ANOVA, Principal Component Analysis         |        |
|     | (PCA), Decision Trees, Support Vector Machines, Networks,          |        |
|     | Clusters, and Grids, Data Mining, Pattern Recognition, Machine     |        |
|     | Learning, Bagging Data, Random Forests, Computer Vision (CV)       |        |
|     | , Natural Language Processing (NLP), Neural Networks,              |        |
|     | TensorFlow.                                                        |        |
|     | <b>Organize and Report Supersteps</b> : Organize Superstep, Report |        |
|     | Superstep, Graphics, Pictures, Showing the Difference              |        |

- Principles of Data Science Sinan Ozdemir PACKT 2016.
   Data Science from Scratch first Principle in python Joel Grus Shroff Publishers 201

# Major II

| Course Description: M.Sc. (Information Technology) |                  |  |
|----------------------------------------------------|------------------|--|
| Semester                                           | Ι                |  |
| Course Name                                        | Image Processing |  |
| Course Code                                        | PIT1IPT          |  |
| Credit                                             | 4                |  |
| Hours                                              | 4 Hrs per week   |  |

| <b>Course Objectives</b> | To Understand the fundamental concepts of a digital image     |  |  |
|--------------------------|---------------------------------------------------------------|--|--|
|                          | processing system by analysing images in the frequency domain |  |  |
|                          | using various transforms.                                     |  |  |

| Course Outcomes | After completing the course, Student will be able to:                                                                               |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                 | 1) Explain basic fundamental concepts of digital image processing.                                                                  |
|                 | 2) Examine the images in the frequency domain using various transforms.                                                             |
|                 | <ul><li>3) Evaluate the techniques for image enhancement, restoration &amp; Categorise of various compression techniques.</li></ul> |
|                 | 4) Interpret Image compression, image segmentation, and representation techniques.                                                  |

| Module/ | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| Ι       | Introduction: Digital Image Processing, Origins of Digital Image<br>Processing, Applications and Examples of Digital Image Processing,<br>Fundamental Steps in Digital Image Processing, Components of an<br>Image Processing System, Digital Image Fundamentals: Elements of<br>Visual Perception, Light and the Electromagnetic Spectrum, Image<br>Sensing and Acquisition, Image Sampling and Quantization, Basic<br>Relationships Between Pixels, Basic Mathematical Tools Used in<br>Digital Image Processing, Intensity Transformations and Spatial<br>Filtering: Basics, Basic Intensity Transformation Functions, Basic<br>Intensity Transformation Functions, Histogram Processing,<br>Fundamentals of Spatial Filtering, Smoothing (Lowpass) Spatial<br>Filters, Sharpening (Highpass) Spatial Filters, Highpass, Bandreject, | 15hrs |

M.Sc. Part I, Information Technology Syllabus

| M.Sc. Part I, | Information Technology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|               | and Bandpass Filters from Lowpass Filters, Combining Spatial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|               | Enhancement Methods, Using Fuzzy Techniques for Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|               | Transformations and Spatial Filtering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| II            | Filtering in the Frequency Domain: Background, Preliminary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15hrs |
|               | Concepts, Sampling and the Fourier Transform of Sampled Functions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|               | The Discrete Fourier Transform of One Variable, Extensions to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|               | Functions of Two Variables, Properties of the 2-D DFT and IDFT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|               | Basics of Filtering in the Frequency Domain, Image Smoothing Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|               | Lowpass Frequency Domain Filters, Image Sharpening Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|               | Highpass Filters, Selective Filtering, Fast Fourier Transform Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|               | Restoration and Reconstruction: A Model of the Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|               | Degradation/Restoration Process, Noise Models, Restoration in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|               | Presence of Noise OnlySpatial Filtering, Periodic Noise Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|               | Using Frequency Domain Filtering, Linear, Position-Invariant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|               | Degradations, Estimating the Degradation Function, Inverse Filtering,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|               | Minimum Mean Square Error (Wiener) Filtering, Constrained Least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|               | Squares Filtering, Geometric Mean Filter, Image Reconstruction from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|               | Projections Wavelet and Other Image Transforms: Preliminaries,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|               | Matrix-based Transforms, Correlation, Basis Functions in the Time-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|               | Frequency Plane, Basis Images, Fourier-Related Transforms, Walsh-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|               | Hadamard Transforms, Slant Transform, Haar Transform, Wavelet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|               | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| TIT           | Color Image Processing: Color Fundamentals, Color Models,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 151   |
| III           | color mage rocessing. Color rundamentars, color Wodels,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15hrs |
| 1             | Decuder color Image Processing Full Color Image Processing Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|               | Pseudocolor Image Processing, Full-Color Image Processing, Color<br>Transformations, Color Image Smoothing and Sharmoning, Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|               | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15hrs |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region                                                                                                                                                                                                                                                                                                                                                |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region                                                                                                                                                                                                                                                                               |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region<br>Growing and by Region Splitting and Merging, Region Segmentation                                                                                                                                                                                                            |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region<br>Growing and by Region Splitting and Merging, Region Segmentation<br>Using Clustering and Superpixels, Region Segmentation Using Graph<br>Cuts, Segmentation Using Morphological Watersheds, Use of Motion                                                                  |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region<br>Growing and by Region Splitting and Merging, Region Segmentation<br>Using Clustering and Superpixels, Region Segmentation Using Graph<br>Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and                                                             |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region<br>Growing and by Region Splitting and Merging, Region Segmentation<br>Using Clustering and Superpixels, Region Segmentation Using Graph<br>Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and<br>Level Sets: Background, Image Segmentation Using Snakes, |       |
| IV            | Transformations, Color Image Smoothing and Sharpening, Using<br>Color in Image Segmentation, Noise in Color Images, Color Image<br>Compression. Image Compression and Watermarking: Fundamentals,<br>Huffman Coding, Golomb Coding, Arithmetic Coding, LZW Coding,<br>Run-length Coding, Symbol-based Coding, 8 Bit-plane Coding, Block<br>Transform Coding, Predictive Coding, Wavelet Coding, Digital Image<br>Watermarking, Morphological Image Processing: Preliminaries,<br>Erosion and Dilation, Opening and Closing, The Hit-or-Miss<br>Transform, Morphological Algorithms, Morphological Reconstruction,<br>Morphological Operations on Binary Images, Grayscale Morphology<br>Image Segmentation I: Edge Detection, Thresholding, and Region<br>Detection: Fundamentals, Thresholding, Segmentation by Region<br>Growing and by Region Splitting and Merging, Region Segmentation<br>Using Clustering and Superpixels, Region Segmentation Using Graph<br>Cuts, Segmentation Image Segmentation II: Active Contours: Snakes and                                                             |       |

| Feature Descriptors, Principal Components as Feature Descriptors, |  |
|-------------------------------------------------------------------|--|
| Whole-Image Features, Scale-Invariant Feature Transform (SIFT)    |  |

### **Reference Books:**

- 1. Digital Image Processing, Gonzalez and Woods, Pearson/Prentice Hall
- 2. Fundamentals of Digital Image Processing, A K. Jain, PHI
- 3. The Image Processing Handbook, J. C. Russ, CRC

# Major III

| Course Description: M.Sc. (Information Technology) |                           |  |
|----------------------------------------------------|---------------------------|--|
| Semester                                           | Ι                         |  |
| Course Name                                        | Soft Computing Techniques |  |
| Course Code                                        | PIT1SCT                   |  |
| Credit                                             | 4                         |  |
| Hours                                              | 4 Hrs per week            |  |

| <b>Course Objectives</b> | Soft computing concepts like fuzzy logic, neural networks and       |  |  |
|--------------------------|---------------------------------------------------------------------|--|--|
|                          | genetic algorithm, where Artificial Intelligence is the mother      |  |  |
|                          | branch of all. All these techniques will be more effective to solve |  |  |
|                          | the problem efficiently.                                            |  |  |

| Course Outcomes | After completing the course, Student will be able to:          |
|-----------------|----------------------------------------------------------------|
|                 | 1) Explain soft computing techniques and their roles in        |
|                 | building intelligent machines.                                 |
|                 | 2) Determine the use of Artificial Intelligence, Fuzzy logic & |
|                 | Genetic algorithms.                                            |
|                 | 3) Make use of Fussy Logic Network for classification and      |
|                 | regression problems.                                           |
|                 | 4) Evaluate soft computing approaches and solutions for a      |
|                 | genetic algorithm & given problem                              |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι               | <ul> <li>Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, applications of soft computing.</li> <li>Artificial Neural Network: Fundamental concept, Evolution of Neural Networks, Basic Models, McCulloh-Pitts Neuron, Linear Separability, Hebb Network.</li> <li>Supervised Learning Network: Perceptron Networks, Adaptive Linear Neuron, Multiple Adaptive Linear Neurons, Backpropagation</li> </ul> | 15hrs |

M.Sc. Part I, Information Technology Syllabus

| M.St. 1 un 1, | Information Technology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|               | Network, Radial Basis Function, Time Delay Network, Functional Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|               | Networks, Tree Neural Network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|               | Associative Memory Networks: Training algorithm for pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|               | Association, Autoassociative memory network, hetroassociative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|               | memory network, bi-directional associative memory, Hopfield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|               | networks, iterative autoassociative memory networks, temporal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|               | associative memory networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| TT            | <b>UnSupervised Learning Networks:</b> Fixed weight competitive nets,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51           |
| II            | Kohonen self-organizing feature maps, learning vectors quantization,<br>counter propogation networks, adaptive resonance theory networks.<br>Special Networks: Simulated annealing, Boltzman machine, Gaussian<br>Machine, Cauchy Machine, Probabilistic neural net, cascade correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15hrs          |
|               | network, cognition network, neo-cognition network, cellular neural<br>network, optical neural network Third Generation Neural Networks:<br>Spiking Neural networks, convolutional neural networks, deep learning<br>neural networks, extreme learning machine model.<br><b>Reinforcement Learning Networks:</b> Policy, Reward function, Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|               | function,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|               | Model of the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| TTT           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15hra          |
| III           | <ul> <li>Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets:</li> <li>Classical sets, Fuzzy sets. Classical Relations and Fuzzy Relations:</li> <li>Cartesian Product of relation, classical relation, fuzzy relations,</li> <li>tolerance and equivalence relations, non-iterative fuzzy sets.</li> <li>Membership Function: features of the membership functions,</li> <li>fuzzification, methods of membership value assignments.</li> <li>Defuzzification: Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy</li> <li>relations, Defuzzification methods.</li> <li>Fuzzy Arithmetic and Fuzzy measures: fuzzy arithmetic, fuzzy</li> <li>measures, measures of fuzziness, fuzzy integrals.</li> <li>Fuzzy Rule base and Approximate reasoning: Fuzzy proportion,</li> <li>formation of rules, decomposition of rules,</li> <li>aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems,</li> <li>Fuzzy logic control systems, control system design, architecture and</li> <li>operation of FLC system, FLC system models and applications of FLC</li> <li>System.</li> </ul> | 15hrs<br>15hrs |
| 11            | <ul> <li>Genetic Algorithm: Biological Background, Traditional optimization and search techniques, genetic algorithm and search space, genetic algorithm vs. traditional algorithms, basic terminologies, simple genetic algorithm, general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in genetic algorithm, problem solving using genetic algorithm, the schema theorem, classification of genetic algorithm, Holland classifier systems, genetic programming, advantages and limitations and applications of genetic algorithm. Differential Evolution Algorithm,</li> <li>Hybrid soft computing techniques – neuro – fuzzy hybrid, genetic neuro-hybrid systems, genetic fuzzy hybrid and fuzzy genetic hybrid systems.</li> </ul>                                                                                                                                                                                                                                                                                               | 1 JHTS         |

- 1. Artificial Intelligence and Soft Computing, Anandita Battacharya Das, SPD 3rd 2018
- 2. Principles of soft computing, S.N.Sivanandam & amp; S.N.Deepa, Wiley 3 rd 2019
- 3. Neuro-Fuzzy Computing and Soft, J.S.R.Jang, C.T.Sun and E.Mizutani, Prentice Hall of India 2004
- 4. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & amp; Applications S.Rajasekaran, G. A. Vijayalakshami Prentice Hall of India 2004
- 5. Fuzzy Logic with Engineering Applications, Timothy J.Ross McGrawHill 1997 15
- 6. Genetic Algorithms: Search, Optimization and Machine Learning Davis E.Goldberg Addison Wesley 1989
- 7. Introduction to AI and Expert System, Dan W. Patterson Prentice, Hall of India 2009

| Major | IV |
|-------|----|
|-------|----|

| Course Description: M.Sc.(Information Technology) |                                                              |  |  |
|---------------------------------------------------|--------------------------------------------------------------|--|--|
| Semester                                          | Ι                                                            |  |  |
| Course Name                                       | Practical of Data Science +<br>Practical of Image Processing |  |  |
| Course Code                                       | PIT1PR1                                                      |  |  |
| Credit                                            | 1                                                            |  |  |
| Hours                                             | 2 Hrs per week                                               |  |  |

| Course Objectives | <ul> <li>Gain practical, hands-on experience with statistics programming languages and big data tools through coursework and applied research experiences.</li> <li>To understand how to analyse images in the frequency domain using various transforms for image enhancement and image restoration, image compression, segmentation and representation techniques in a mathematical way using Matlab/Scilab/Python.</li> </ul> |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Course Outcomes | After completing the course, Student will be able to:          |  |
|-----------------|----------------------------------------------------------------|--|
|                 | 1) Construct program using utilities, auditing and data        |  |
|                 | visualization in data science.                                 |  |
|                 | 2) Build a program to retrieve, assess, process, transform and |  |
|                 | organise the data in data science.                             |  |
|                 | 3) Design a program for image transformation.                  |  |
|                 | 4) Design a program for Color Image Processing.                |  |

| Module/<br>Unit | Course Description                                                                     | Hrs  |
|-----------------|----------------------------------------------------------------------------------------|------|
| 1               | <ul><li>A) Text Delimited CSV to HORUS Format</li><li>B) XML to HORUS format</li></ul> | 2hrs |
| 2               | A) JSON to HORUS Format                                                                | 2hrs |

M.Sc. Part I, Information Technology Syllabus

| M.Sc. Pari 1, Information Technology Syllabus |                                           |      |  |
|-----------------------------------------------|-------------------------------------------|------|--|
|                                               | B) AUDIO to HORUS Format                  |      |  |
| 3                                             | Fixing Utilities                          | 2hrs |  |
|                                               | A) Data Binning or Bucketing              |      |  |
| 4                                             | B) Averaging of data                      | 2hrs |  |
| 5                                             | Assessing Data                            | 2hrs |  |
| 6                                             | Build the time hub, links and satellites  | 2hrs |  |
| 7                                             | Transforming Data                         | 2hrs |  |
| 8                                             | Data Visualization with Power BI          | 2hrs |  |
| 9                                             | Gray Level Slicing and Bit Plane Slicing  | 2hrs |  |
| 10                                            | Histogram and histogram equalization.     | 2hrs |  |
| 11                                            | Smoothing and sharpening of an image.     | 2hrs |  |
| 12                                            | Median Filtering of an Image.             | 2hrs |  |
| 13                                            | Homomorphic Filtering of an image.        | 2hrs |  |
| 14                                            | Edge Detection of an image                | 2hrs |  |
| 15                                            | Program to perform threshold on an image. | 2hrs |  |

1. Principles of Data Science Sinan Ozdemir PACKT 2016.

2. Data Science from Scratch first Principle in python Joel Grus Shroff Publishers 201

3. Digital Image Processing, Gonzalez and Woods, Pearson/Prentice Hall

4. Fundamentals of Digital Image Processing, A K. Jain, PHI

5 The Image Processing Handbook, J. C. Russ, CRC

# **Elective I**

| Course Description: M.Sc. (Information Technology) |                 |  |  |
|----------------------------------------------------|-----------------|--|--|
| Semester                                           | Ι               |  |  |
| Course Name                                        | Cloud Computing |  |  |
| Course Code                                        | PIT1CCT         |  |  |
| Credit                                             | 2               |  |  |
| Hours                                              | 4 Hrs per week  |  |  |

| <b>Course Objectives</b> | To learn how to use Cloud Services, implement Virtualization, |  |
|--------------------------|---------------------------------------------------------------|--|
|                          | implement Task Scheduling algorithms.                         |  |
|                          | To Apply Map-Reduce concept to applications, build Private    |  |
|                          | Cloud & Broadly educate to know the impact of engineering on  |  |
|                          | legal and societal issues involved.                           |  |

| Course Outcomes | After completing the course, Student will be able to:            |  |  |
|-----------------|------------------------------------------------------------------|--|--|
|                 | 1) Define cloud computing and various virtualization technique.  |  |  |
|                 | 2) Classify the types of cloud and cloud computing architecture. |  |  |
|                 | 3) Explain cloud security mechanism.                             |  |  |
|                 | 4) Elaborate advanced architecture and cloud delivery model.     |  |  |

| Module/ | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs.  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Ι       | Introduction to Cloud Computing: Introduction, Historical<br>developments, Building Cloud Computing Environments, Principles of<br>Parallel and Distributed Computing: Eras of Computing, Parallel v/s<br>distributed computing, Elements of Parallel Computing, Elements of<br>distributed computing, Technologies for distributed computing.<br>Virtualization:Introduction, Characteristics of virtualized<br>environments, Taxonomy of virtualization techniques, Virtualization and | 15hrs |
|         | cloud computing, Pros and cons of virtualization, Technology examples.<br>Logical Network Perimeter, Virtual Server, Cloud Storage Device,<br>Cloud usage monitor, Resource replication, Ready-made environment.                                                                                                                                                                                                                                                                         |       |
| II      | <b>Cloud Computing Architecture:</b> Introduction, Fundamental concepts and models, Roles and boundaries, Cloud Characteristics, Cloud                                                                                                                                                                                                                                                                                                                                                   | 15hrs |

M.Sc. Part I, Information Technology Syllabus

| M.Sc. Part I | , Information Technology Syllabus                                    |       |
|--------------|----------------------------------------------------------------------|-------|
|              | Delivery models, Cloud Deployment models, Economics of the cloud,    |       |
|              | Open challenges.                                                     |       |
|              | Fundamental Cloud Architectures: Workload Distribution               |       |
|              | Architecture, Resource Pooling Architecture, Dynamic Scalability     |       |
|              | Architecture, Elastic Resource Capacity Architecture, Service Load   |       |
|              | Balancing Architecture, Cloud Bursting Architecture, Elastic Disk    |       |
|              | Provisioning Architecture, Redundant Storage Architecture.           |       |
|              | Industrial Platforms and New Developments:                           |       |
|              | Amazon Web Services, Google App Engine, Microsoft Azure.             |       |
| III          | Fundamental Cloud Security: Basics, Threat agents,                   | 15hrs |
|              | Cloud security threats, additional considerations.                   |       |
|              | Cloud Management Mechanisms: Remote administration system,           |       |
|              | Resource Management System, SLA Management System, Billing           |       |
|              | Management System                                                    |       |
|              | Cloud Security Mechanisms: Encryption, Hashing, Digital              |       |
|              | Signature, Public Key Infrastructure (PKI), Identity and Access      |       |
|              | Management (IAM), Single Sign-On (SSO), Cloud-Based Security         |       |
|              | Groups, Hardened Virtual Server Images.                              |       |
| IV           | Advanced Cloud Architectures: Hypervisor Clustering Architecture,    | 15hrs |
|              | Load Balanced Virtual Server Instances Architecture, Non-Disruptive  |       |
|              | Service Relocation Architecture, Zero Downtime Architecture, Cloud   |       |
|              | Balancing Architecture, Resource Reservation Architecture, Dynamic   |       |
|              | Failure Detection and Recovery Architecture, Bare-Metal Provisioning |       |
|              | Architecture, Rapid Provisioning Architecture, Storage Workload      |       |
|              | Management Architecture.                                             |       |
|              | Cloud Delivery Model Considerations: Cloud Delivery Models: The      |       |
|              | Cloud Provider Perspective, Cloud Delivery Models: The Cloud         |       |
|              | Consumer Perspective                                                 |       |
|              |                                                                      |       |
|              |                                                                      |       |

- 1. Distributed and Cloud Computing, From Parallel Processing to the Internet of ThingsKai Hwang, Jack Dongarra, Geoffrey Fox MK Publishers -- 2012VMware and Microsoft Platform in the Virtual Data center, 2006, Auerbach.
- 2. Cloud Computing: A Practical Approach , Anthony T. Velte, Toby J. Velte, Ph.D. Robert Elsenpeter.

## **Elective II**

| Course Description: B.Sc. (Information Technology) |                 |  |
|----------------------------------------------------|-----------------|--|
| Semester                                           | Ι               |  |
| Course Name                                        | Ethical Hacking |  |
| Course Code                                        | PIT1EHT         |  |
| Credit                                             | 2               |  |
| Hours                                              | 4 Hrs per week  |  |

| <b>Course Objectives</b> | To understand the ethics, legality, methodologies and techniques |  |
|--------------------------|------------------------------------------------------------------|--|
| _                        | of hacking.                                                      |  |

| Course OutcomesAfter completing the course, Student will be able |                                                              |
|------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                  | 1) Define information security and types of malware.         |
|                                                                  | 2) Classify the types of attacks and their common prevention |
|                                                                  | mechanisms.                                                  |
|                                                                  | 3) Explain enterprise strategy and ethical hacking patterns. |
|                                                                  | 4) Examine application hacking and malware analysis.         |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I               | <b>Information Security</b> : Attacks and Vulnerabilities Introduction to<br>information security : Asset, Access Control, CIA, Authentication,<br>Authorization, Risk, Threat, Vulnerability, Attack, Attack Surface,<br>Malware, Security-Functionality-Ease of Use Triangle <b>Types of</b><br><b>malware</b> :Worms, viruses, Trojans, Spyware, Rootkits Types of<br>vulnerabilities : OWASP Top 10 : cross-site scripting (XSS), cross site<br>request forgery (CSRF/XSRF), SQL injection, input parameter<br>manipulation, broken authentication, sensitive information disclosure,<br>XML External Entities, Broken access control, Security<br>Misconfiguration, Using components with known vulnerabilities,<br>Insufficient Logging and monitoring, OWASP Mobile Top 10, CVE<br>Database | 15hrs |

### M.Sc. Part I, Information Technology Syllabus

| II  | Information Technology Syllabus           Types of attacks and their common prevention mechanisms : | 15hrs  |
|-----|-----------------------------------------------------------------------------------------------------|--------|
|     | Keystroke Logging, Denial of Service (DoS /DDoS), Waterhole attack,                                 | 151115 |
|     | brute force, phishing and fake WAP, Eavesdropping, Man-in-the-                                      |        |
|     | middle, Session Hijacking, Clickjacking, Cookie Theft, URL                                          |        |
|     | Obfuscation, buffer overflow, DNS poisoning, ARP poisoning,                                         |        |
|     | Identity Theft, IoT Attacks, BOTs and BOTNETs Case-studies :                                        |        |
|     | Recent attacks – Yahoo, Adult Friend Finder, eBay, Equifax,                                         |        |
|     | WannaCry, Target Stores, Uber, JP Morgan Chase, Bad Rabbit                                          |        |
|     | <b>Ethical Hacking – I</b> (Introduction and pre-attack) Introduction: Black                        |        |
|     | Hat vs. Gray Hat vs. White Hat (Ethical) hacking, Why is Ethical                                    |        |
|     | hacking needed?, How is Ethical hacking different from security                                     |        |
|     | auditing and digital forensics?, Signing NDA, Compliance and                                        |        |
|     | Regulatory 15L concerns, Black box vs. White box vs. Black box,                                     |        |
|     | Vulnerability assessment and Penetration Testing. Approach :                                        |        |
|     | Planning - Threat Modeling, set up security verification standards, Set                             |        |
|     | up security testing plan – When, which systems/apps, understanding                                  |        |
|     | functionality, black/gray/white, authenticated vs. unauthenticated,                                 |        |
|     | internal vs. external PT, Information gathering, Perform Manual and                                 |        |
|     | automated (Tools: WebInspect/Qualys, Nessus, Proxies, Metasploit)                                   |        |
|     | VA and PT, How WebInspect/Qualys tools work: Crawling/Spidering,                                    |        |
|     | requests forging, pattern matching to known vulnerability database and                              |        |
|     | Analyzing results, Preparing report, Fixing security gaps following the                             |        |
|     | report                                                                                              |        |
|     |                                                                                                     | 1 51   |
| III | <b>Enterprise strategy</b> : Repeated PT, approval by security testing team,                        | 15hrs  |
|     | Continuous Application Security Testing, Phases:                                                    |        |
|     | Reconnaissance/foot-printing/Enumeration, Phases: Scanning,                                         |        |
|     | Sniffing                                                                                            |        |
|     | Ethical Hacking :Enterprise Security Phases : Gaining and                                           |        |
|     | Maintaining Access : Systems hacking – Windows and Linux –                                          |        |
|     | Metasploit and Kali Linux, Keylogging, Buffer Overflows, Privilege                                  |        |
|     | Escalation, Network hacking - ARP Poisoning, Password Cracking,                                     |        |
|     | WEP Vulnerabilities, MAC Spoofing, MAC Flooding, IPSpoofing,                                        |        |
|     | SYN Flooding, Smurf attack,                                                                         |        |
| IV  | Applications hacking : SMTP/Email-based attacks, VOIP                                               | 15hrs  |
| L V | vulnerabilities, Directory traversal, Input Manipulation, Brute force                               | 131115 |
|     |                                                                                                     |        |
|     | LATTACK Unsecured login mechanisms NUL intection XNN Mobile                                         |        |
|     | attack, Unsecured login mechanisms, SQL injection, XSS, Mobile                                      |        |
|     | attack, Unsecured login mechanisms, SQL injection, XSS, Mobile apps security                        |        |
|     |                                                                                                     |        |
|     | apps security                                                                                       |        |

| and evasion techniques, Secure Code Reviews (Fortify tool, OWASP |  |
|------------------------------------------------------------------|--|
| Secure Coding Guidelines)                                        |  |

- 1. Ethical Hacking Review Guide, Kimberly Graves, Wiley Publishing
- 2. Ethical Hacking, AnkitFadia, 2<sup>nd</sup> Edition, Macmillan India Ltd,2006.
- 3. Insider Computer Fraud, Kenneth C. Brancik, 2008, Auerbach Publications.
- 4. Certified Ethical Hacker Study Guide v9, Sean-Philip Oriyano, Sybex; Study Guide Edition,2016

| Course Description: M.Sc.(Information Technology) |                                                                                         |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Semester                                          | Ι                                                                                       |  |
| Course Name                                       | Practical : Practical of Cloud<br>Computing + Practical of Soft<br>Computing Techniques |  |
| Course Code                                       | PIT1PR2                                                                                 |  |
| Credit                                            | 1                                                                                       |  |
| Hours                                             | 2 Hrs per week                                                                          |  |

| <ul> <li>Course Objectives</li> <li>To provide easy, scalable access to computing resources and IT services.</li> <li>To understand soft computing concepts by doing programs of fuzzy logic, neural networks and genetic algorithms. To understand how to solve the problems Mathematically by using Python Programming language efficiently.</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Course Outcomes | After completing the course, Student will be able to:                                 |  |
|-----------------|---------------------------------------------------------------------------------------|--|
|                 | 1) Create web services using java application (Netbeans).                             |  |
|                 | 2) Make use of virtualization using VMWare ESXi server<br>and managing with vCenter.  |  |
|                 | 3) Design a simple linear neural network model and Back<br>Propagation                |  |
|                 | <ul><li>4) Make use of a program for in fuzzy logic and Genetic Algorithms.</li></ul> |  |

| Module/<br>Unit | Course Description                                                                                                                                                     | Hrs  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1               | Write a program for implementing Client Server communication model<br>using TCP.<br>A client server based program using TCP to find if the number entered<br>is prime. | 2Hrs |

M.Sc. Part I, Information Technology Syllabus

| Information Technology Syllabus                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write a program for implementing Client Server communication model                  | 2Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| using TCP.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A client server TCP based chatting application.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program for implementing Client Server communication model                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| using UDP.A client server based program using UDP to find if the                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| number entered is even or odd.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program for implementing Client Server communication model                  | 2Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| using UDP.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A client server based program using UDP to find the factorial of the                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| entered number.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program for implementing Client Server communication model                  | 2Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| using UDP.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| subtraction, multiplication and division.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                     | 2Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A RMI based application program that converts digits to words, e.g. 123             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| will be converted to one two three.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                     | 2Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| with vCenter.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Design a simple linear neural network model.                                        | 2hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calculate the output of neural net using both binary and bipolar sigmoidal function | 2hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Generate AND/NOT function using McCulloch Pitts neural net2hrs                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program to implement Hebb's rule2hr                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program to implement Delta rule2hr                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Write a program for Back Propagation Algorithm                                      | 2hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solve the ratios using fuzzy logic                                                  | 2hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Implementation of Simple genetic algorithm.                                         | 2hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                     | <ul> <li>Write a program for implementing Client Server communication model using TCP.</li> <li>A client server TCP based chatting application.</li> <li>Write a program for implementing Client Server communication model using UDP. A client server based program using UDP to find if the number entered is even or odd.</li> <li>Write a program for implementing Client Server communication model using UDP.</li> <li>A client server based program using UDP to find the factorial of the entered number.</li> <li>Write a program for implementing Client Server communication model using UDP.</li> <li>A client server based program using UDP to find the factorial of the entered number.</li> <li>Write a program for implementing Client Server communication model using UDP.</li> <li>A program to implement simple calculator operations like addition, subtraction, multiplication and division.</li> <li>Write a program to show the object communication using RMI.</li> <li>A RMI based application program that converts digits to words, e.g. 123 will be converted to one two three.</li> <li>Implement virtualization using VMWare ESXi Server and managing with vCenter.</li> <li>Design a simple linear neural network model.</li> <li>Calculate the output of neural net using both binary and bipolar sigmoidal function</li> <li>Generate AND/NOT function using McCulloch Pitts neural net</li> <li>Write a program to implement Delta rule</li> <li>Write a program to implement Delta rule</li> <li>Write a program for Back Propagation Algorithm</li> <li>Solve the ratios using fuzzy logic</li> </ul> |

- 1. Distributed and Cloud Computing, From Parallel Processing to the Internet of ThingsKai Hwang, Jack Dongarra, Geoffrey Fox MK Publishers -- 2012VMware and Microsoft Platform in the Virtual Data center, 2006, Auerbach.
- 2. Cloud Computing: A Practical Approach , Anthony T. Velte, Toby J. Velte, Ph.D. Robert Elsenpeter.
- 3. Artificial Intelligence and Soft Computing, Anandita Battacharya Das, SPD 3rd 2018
- 4. Principles of soft computing, S.N.Sivanandam & amp; S.N.Deepa, Wiley 3 rd 2019

#### M.Sc. Part I, Information Technology Syllabus

5. Neuro-Fuzzy Computing and Soft, J.S.R.Jang, C.T.Sun and E.Mizutani, Prentice Hall of

India 2004

- 6. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & amp; Applications S.Rajasekaran, G. A. Vijayalakshami Prentice Hall of India 2004
- 7. Fuzzy Logic with Engineering Applications, Timothy J.Ross McGrawHill 1997 15
- 8. Genetic Algorithms: Search, Optimization and Machine Learning Davis E.Goldberg Addison Wesley 1989
- 9. Introduction to AI and Expert System, Dan W. Patterson Prentice, Hall of India 2009

## Minor

| Course Description: M.Sc. (Information Technology) |                      |  |
|----------------------------------------------------|----------------------|--|
| Semester                                           | Ι                    |  |
| Course Name                                        | Research Methodology |  |
| Course Code                                        | PIT1RMT              |  |
| Credit                                             | 4                    |  |
| Hours                                              | 4 Hrs per week       |  |

| <b>Course Objectives</b> | Understand    | some     | basic    | concepts    | of    | research     | and    | its  |
|--------------------------|---------------|----------|----------|-------------|-------|--------------|--------|------|
| _                        | methodologi   | es. Sele | ct and o | define appr | opria | ite research | n prob | lem  |
|                          | and paramet   | ters. Or | rganize  | and condu   | uct 1 | research in  | n a m  | nore |
|                          | appropriate r | nanner.  | Write a  | research re | eport | and thesis   |        |      |

| Course Outcomes | After completing the course, Student will be able to: |  |
|-----------------|-------------------------------------------------------|--|
|                 | 1) Define the role business research                  |  |
|                 | 2) Classify stages of the research and Measurement    |  |
|                 | Sampling and Field work                               |  |
|                 | 3) Distinguish different research methods and         |  |
|                 | measurement concepts.                                 |  |
|                 | 4) Explain Different concepts of data analysis        |  |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                      | Hrs.  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I               | Introduction: Role of Business Research, Information<br>Systems and Knowledge Management, Theory Building,<br>Organization ethics and Issues<br><b>Beginning Stages of Research Process:</b> Problem definition,<br>Qualitative research tools, Secondary data research | 15hrs |
| II              | <b>Research Methods and Data Collection:</b> Survey research, communicating with respondents, Observation methods, Experimental Research.                                                                                                                               | 15hrs |

#### M.Sc. Part I, Information Technology Syllabus

| III | Measurement Concepts, Sampling and Field work: Levels of            | 15hrs |
|-----|---------------------------------------------------------------------|-------|
|     | Scale measurement, attitude measurement, questionnaire design,      |       |
|     | sampling designs and procedures, determination of sample size       |       |
| IV  | Data Analysis and Presentation: Editing and Coding, Basic Data      | 15hrs |
|     | Analysis, Univariate Statistical Analysis and Bivariate Statistical |       |
|     | analysis and differences between two variables. Multivariate        |       |
|     | Statistical Analysis                                                |       |

- 1) Business Research Method ,William G.Zikmund, B.J Babin, J.C. Carr, Cengage, 8e, 2016.
- 2) Research Methods for Business Students Fifth Edition, Mark Saunders2011
- 3) Multivariate Data Analysis, Hair7e

# Semester- II

# Major I

| Course Description: M.Sc. (Information Technology) |                    |  |
|----------------------------------------------------|--------------------|--|
| Semester                                           | II                 |  |
| Course Name                                        | Big Data Analytics |  |
| Course Code                                        | PIT2BDA            |  |
| Credit                                             | 4                  |  |
| Hours                                              | 4 Hrs per week     |  |

| <b>Course Objectives</b> | To enable students to have skills that will help them to solve  |
|--------------------------|-----------------------------------------------------------------|
|                          | complex real world problems for decision support. To provide an |
|                          | overview of an exciting growing field of big data analytics.    |

| Course Outcomes | After completing the course, Student will be able to:       |  |  |
|-----------------|-------------------------------------------------------------|--|--|
|                 | 1) Explain concept of Data and Big Data                     |  |  |
|                 | 2) Explain clustering and association algorithm             |  |  |
|                 | 3) Solve problem based on classification methods            |  |  |
|                 | 4) Elaborate Data Products and Patterns with Hadoop in Data |  |  |
|                 | science                                                     |  |  |

| Module/ | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| I       | <ul> <li>Introduction to Big Data Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Key roles for New Big Data Ecosystems, Examples of big Data Analytics.</li> <li>Big Data Analytics: Introduction to big data analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Analytics Life Cycle</li> </ul> | 15hrs |

M.Sc. Part I, Information Technology Syllabus

| 111501 I wit I, | Information Lechnology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| II              | Analytical Theory and Methods: Clustering and Associated<br>Algorithms, Association Rules, Apriori Algorithm, Diagnostics,<br>Regression, Linear Regression, Logistic Regression, Additional<br>Regression Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15hrs |
| III             | Classification, Decision Trees, Naïve Bayes, Diagnostics of<br>Classifiers, Additional Classification Methods, Time Series<br>Analysis, Box Jenkins methodology, ARIMA Model, Additional<br>methods. Text Analysis, Steps, Text Analysis Example, Collecting<br>Raw Text, Representing Text, Term Frequency-Inverse Document<br>Frequency (TFIDF), Categorizing Documents by Topics,<br>Determining Sentiments. Data Product, Building Data Products at<br>Scale with Hadoop Data Science Pipeline and Hadoop Ecosystem,<br>Operating System for Big Data, Concepts, Hadoop Architecture,<br>Working with Distributed file system, Working with Distributed<br>Computation, Framework for Python and Hadoop Streaming, Hadoop<br>Streaming, MapReduce with Python, Advanced MapReduce. In-<br>Memory Computing with Spark,Spark Basics, Interactive Spark with<br>PySpark, Writing Spark Applications, | 15hrs |
| IV              | <b>Distributed Analysis and Patterns</b> : Computing with Keys,<br>Design Patterns, Last-Mile Analytics, Data Mining and<br>Warehousing, Structured Data Queries with Hive, HBase, Data<br>Ingestion, Importing Relational data with Sqoop, Injesting stream<br>data with flume. Analytics with higher level APIs, Pig, Spark's<br>higher level APIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15hrs |

- 1. Big Data and Analytics: Subhashini Chellappan Seema Acharya, Wiley, First
- 2. Data Analytics with Hadoop An Introduction for Data Scientists: Benjamin Bengfort and Jenny Kim, O'Reilly, 2016
- 3. Big Data and Hadoop: V.K Jain, Khanna Publishing, First, 2018

# Major II

| Course Description: M.Sc. (Information Technology) |                   |  |
|----------------------------------------------------|-------------------|--|
| Semester                                           | II                |  |
| Course Name                                        | Modern Networking |  |
| Course Code                                        | PIT2MNT           |  |
| Credit                                             | 4                 |  |
| Hours                                              | 4 Hrs per week    |  |

| Course Objectives | • To understand the state-of-the-art in network protocols |  |
|-------------------|-----------------------------------------------------------|--|
|                   | architectures and applications.                           |  |
|                   | • Analyze existing network protocols and networks.        |  |
|                   | • Develop new protocols in networking                     |  |

| Course Outcomes | After completing the course, Student will be able to:      |  |  |
|-----------------|------------------------------------------------------------|--|--|
|                 | 1) List the elements of Modern Networking                  |  |  |
|                 | 2) Classify different levels of Software Define Network    |  |  |
|                 | 3) Explain Network Virtualization Function and VLAN        |  |  |
|                 | 4) Summarizing Quality of Service, Quality of Experience & |  |  |
|                 | Modern Network Architecture.                               |  |  |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι               | Modern Networking Elements of Modern Networking The<br>Networking Ecosystem ,Example Network Architectures,Global<br>Network Architecture,A Typical Network Hierarchy Ethernet<br>Applications of Ethernet Standards Ethernet Data Rates Wi-Fi<br>Applications of Wi-Fi,Standards Wi-Fi Data Rates 4G/5G Cellular<br>First Generation Second Generation, Third Generation Fourth<br>Generation Fifth Generation, Cloud Computing Cloud Computing<br>Concepts The Benefits of Cloud Computing Cloud Networking<br>Cloud Storage, Internet of Things Things on the Internet of Things,<br>Evolution Layers of the Internet of Things, Network Convergence<br>Unified Communications, Requirements and Technology Types of | 15Hrs |

#### M.Sc. Part I, Information Technology Syllabus

|     | Information Technology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | Network and Internet Traffic, Elastic Traffic, Inelastic Traffic, Real-<br>Time Traffic Characteristics Demand: Big Data, Cloud Computing,<br>and Mobile TrafficBig Data Cloud Computing, Mobile Traffic,<br>Requirements: QoS and QoE,,Quality of Service, Quality of<br>Experience, Routing Characteristics, Packet Forwarding,<br>Congestion Control ,Effects of Congestion, Congestion Control<br>Techniques, SDN and NFV Software Defined Networking, Network<br>Functions Virtualization Modern Networking Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Ι   | Software-Defined Networks SDN: Background and Motivation,<br>Evolving Network Requirements Demand Is Increasing, Supply Is<br>Increasing Traffic Patterns Are More Complex Traditional Network<br>Architectures are Inadequate, The SDN Approach Requirements<br>SDN Architecture Characteristics of Software12 20 Defined<br>Networking, SDN- and NFV-Related Standards Standards<br>Developing Organizations Industry Consortia Open Development<br>Initiatives, SDN Data Plane and OpenFlow SDN Data Plane, Data<br>Plane Functions Data Plane Protocols OpenFlow Logical Network<br>Device Flow Table Structure Flow Table Pipeline, The Use of<br>Multiple Tables Group Table OpenFlow Protocol, SDN Control<br>Plane SDN Control Plane Architecture Control Plane Functions,<br>Southbound Interface Northbound InterfaceRouting, ITU-T Model,<br>OpenDaylight OpenDaylight Architecture OpenDaylight Helium,<br>REST REST Constraints Example REST API, Cooperation and<br>Coordination Among Controllers, Centralized Versus Distributed<br>Controllers, HighAvailability Clusters Federated SDN Networks,<br>Border Gateway Protocol Routing and QoS Between Domains, Using<br>BGP for QoS Management IETF SDNi OpenDaylight SNDi SDN<br>Application Plane SDN Application Plane Architecture Northbound<br>Interface, Network Services Abstraction Layer Abstractions,<br>User Interface, Network Services Abstraction Layer Abstractions in<br>SDN, Frenetic Traffic Engineering PolicyCop Measurement and<br>Monitoring Security OpenDaylight DDoS Application Data Center<br>Networking, Big Data over SDN Cloud Networking over SDN<br>Mobility and Wireless Information-Centric Networking CCNx, Use<br>of an Abstraction Layer | 15Hrs |
| III | Virtualization, Network Functions Virtualization: Concepts and<br>Architecture, Background and Motivation for NFV, Virtual<br>Machines The Virtual Machine Monitor, Architectural Approaches<br>Container Virtualization, NFV Concepts Simple Example of the Use<br>of NFV, NFV Principles High-Level NFV Framework, NFV Benefits<br>and Requirements NFV Benefits, NFV Requirements, NFV<br>Reference Architecture NFV Management and Orchestration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15Hrs |

#### M.Sc. Part I, Information Technology Syllabus

|    | Reference Points Implementation, NFV Functionality, NFV           |       |
|----|-------------------------------------------------------------------|-------|
|    | Infrastructure, Container Interface, Deployment of NFVI           |       |
|    | Containers, Logical Structure of NFVI Domains, ComputeDomain,     |       |
|    | Hypervisor Domain, Infrastructure Network Domain, Virtualized     |       |
|    | Network Functions, VNF Interfaces, VNFC to VNFC                   |       |
|    | Communication, VNF Scaling, NFV Management and Orchestration,     |       |
|    | Virtualized Infrastructure Manager, Virtual Network Function      |       |
|    | Manager, NFV Orchestrator, Repositories, Element Management,      |       |
|    | OSS/BSS, NFV Use Cases Architectural Use Cases, Service-          |       |
|    | Oriented Use Cases, SDN and NFV Network ware Defined Storage,     |       |
|    | SDI Architecture                                                  |       |
|    | Winterstien Winterst LAND, The Har of Winterst LAND, Defining     | 1 71  |
| IV | Virtualization, Virtual LANs ,The Use of Virtual LANs, Defining   | 15hrs |
|    | VLANs, Communicating VLAN Membership ,IEEE 802.1Q VLAN            |       |
|    | Standard, Nested VLANs, OpenFlow VLAN Support, Virtual Private    |       |
|    | Networks, IPsec VPNs, MPLS VPNs, Network Virtualization,          |       |
|    | Simplified Example, Network Virtualization Architecture, Benefits |       |
|    | of Network Virtualization, OpenDaylight's Virtual Tenant Network, |       |
|    | Software Defined Infrastructure, Soft                             |       |
|    |                                                                   |       |

### **References:**

1. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud William Stallings AddisonWesley

2. Network Functions Virtualization (NFV) with a Touch of SDN Rajendra Chayapathi Syed Farrukh Hassan AddisonWesley

| Course Description: M.Sc. (Information Technology) |                             |  |
|----------------------------------------------------|-----------------------------|--|
| Semester                                           | II                          |  |
| Course Name                                        | Natural Language Processing |  |
| Course Code                                        | PIT2NLP                     |  |
| Credit                                             | 4                           |  |
| Hours                                              | 4 Hrs per week              |  |

# Major III

| Course Objectives | To define natural language processing and to learn various stages of |  |
|-------------------|----------------------------------------------------------------------|--|
|                   | natural language processing.                                         |  |

| Course Outcomes | After completing the course, Student will be able to:                               |
|-----------------|-------------------------------------------------------------------------------------|
|                 | 1) Explain the field of natural language processing                                 |
|                 | 2) design various POS tagging techniques and parsers                                |
|                 | 3) Design and test algorithms for semantic and pragmatic analysis.                  |
|                 | <ol> <li>Apply NLP techniques to design real world NLP<br/>applications.</li> </ol> |

| Module/ | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs.  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Ι       | Introduction to NLP Origin & History of NLP; Language, Knowledge<br>and Grammar in language processing; Stages in NLP;Ambiguities and<br>its types in English and Indian Regional Llanguages; Challenges of<br>NLP;Applications of NLP Self-Learning topics: Variety types of tools<br>for regional languages pre-processing and other functionalities Word<br>Level Analysis Basic Terms: Tokenization, Stemming, Lemmatization;<br>Survey of English Morphology, Inflectional Morphology, Derivational<br>Morphology; Regular expression with types; Morphological Models:<br>Dictionary lookup, finite state morphology; Morphological parsing with<br>FST (Finite State Transducer);Lexicon free FST Porter Stemmer<br>algorithm; Grams and its variation: Bigram, Trigram; Simple<br>(Unsmoothed) N-grams;N-gram Sensitivity to the Training Corpus;<br>Unknown Words: Open versus closed vocabulary tasks; Evaluating N-<br>grams: Perplexity;Smoothing: Laplace Smoothing, Good-Turing<br>Discounting; | 15hrs |

M.Sc. Part I, Information Technology Syllabus

| 11.000 1 0.00 1, | information Technology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                  | Self-Learning topics: Noisy channel models, various edit distance,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                  | Advance Issues in Language Modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| II               | Syntax analysis Part-Of-Speech tagging(POS); Tag set for English<br>(Upenn Treebank); Difficulties /Challenges in POS tagging; Rule-<br>based, Stochastic and Transformation-based tagging; Generative<br>Model: Hidden Markov Model (HMM Viterbi) for POS tagging; Issues<br>in HMM POS tagging; Discriminative Model: Maximum Entropy<br>model, Conditional random Field (CRF);Parsers: Top down and Bottom<br>up; Modelling constituency; Bottom Up Parser: CYK, PCFG<br>(Probabilistic Context Free Grammar), Shift Reduce Parser; Top Down<br>Parser: Early Parser, Predictive Parser<br>Self-Learning topics: Evaluating parsers, Parsers based language<br>modelling, Regional languages POS tree banks | 15hrs |
| III              | Semantic Analysis Introduction, meaning representation; Lexical<br>Semantics; Corpus study; Study of Various language dictionaries like<br>WorldNet, Babelnet; Relations among lexemes & their senses –<br>Homonymy, Polysemy, Synonymy, Hyponymy; Semantic Ambiguity;<br>Word Sense Disambiguation (WSD); Knowledge based approach(<br>Lesk's Algorithm), Supervised (Naïve Bayes, Decision<br>List),Introduction to Semi-supervised method (Yarowsky)<br>Unsupervised (Hyperlex) Self-Learning topics: Dictionaries for<br>regional languages, Distributional Semantics, Topic Models                                                                                                                        | 15hrs |
| IV               | Pragmatic & Discourse Processing<br>Discourse: Reference Resolution, Reference Phenomena, Syntactic &<br>Semantic constraint on coherence; Anaphora Resolution using Hobbs<br>and Cantering Algorithm Self-Learning topics: Discourse<br>segmentation, Conference resolution Applications of NLP Case studies<br>on (preferable in regional language):Machine translation; Text<br>Summarization; Sentiment analysis; Information retrieval; Question<br>Answering system Self-Learning topics: Applications based on Deep<br>Neural Network with NLP such as LSTM network, Recurrent Neural<br>network etc.                                                                                                   | 15hrs |

- 1. Sentiment Analysis and Opinion Mining, Bing Liu, Morgan & Claypool Publishers, May 2012.
- 2. Speech and Language Processing (3rd ed. draft) Dan Jurafsky and James H. Martin
- 3. Natural Language Understanding 2nd Edition, James Allen (Author), Pearson

# Major IV

| Course Description: M.Sc.(Information Technology) |                                                                     |  |  |
|---------------------------------------------------|---------------------------------------------------------------------|--|--|
| Semester                                          | II                                                                  |  |  |
| Course Name                                       | Practical of Big Data Analytics +<br>Practical of Modern Networking |  |  |
| Course Code                                       | PIT2PR1                                                             |  |  |
| Credit                                            | 1                                                                   |  |  |
| Hours                                             | 2 Hrs per week                                                      |  |  |

|--|

| Course Outcomes | After completing the course, Student will be able to:                     |
|-----------------|---------------------------------------------------------------------------|
|                 | 1) Build hadoop and HDFS & develop application in<br>MongoDB              |
|                 | 2) Construct a program using MapReduce & design an<br>application in Hive |
|                 | 3) Build IP SLA Tracking & Path Control & create AS-PATH attribute,       |
|                 | 4) Construct IBGP & EBGP Session & develop Inter VLAN<br>Routing          |

| Module/<br>Unit | Course Description                   | Hrs  |
|-----------------|--------------------------------------|------|
| 1               | Install and configure Hadoop.        | 2Hrs |
| 2               | Run Hadoop and HDFS ad explore HDFS. | 2Hrs |

M.Sc. Part I, Information Technology Syllabus

| 3  | Implement Decision tree classification techniques.        | 2Hrs |
|----|-----------------------------------------------------------|------|
| 4  | Implement SVM classification techniques                   | 2Hrs |
| 5  | CLASSIFICATION MODEL                                      | 2Hrs |
|    | a. Install relevant package for classification.           |      |
|    | b. Choose classifier for classification problem           |      |
| 6  | CLASSIFICATION MODEL:                                     | 2Hrs |
|    | Evaluate the performance of classifier.                   |      |
| 7  | CLUSTERING MODEL                                          | 2Hrs |
|    | a. Clustering algorithms for unsupervised classification. |      |
|    | b. Plot the cluster data using R visualizations.          |      |
| 8  | Configure RIP Routing Protocol.                           | 2Hrs |
| 9  | Configure IP SLA Tracking and Path Control Topology       | 2Hrs |
| 10 | Configure Path Control Topology                           | 2Hrs |
| 11 | Configure EIGRP Routing Protocol                          | 2Hrs |
| 12 | Using the AS_PATH Attribute                               | 2Hrs |
| 13 | Configure BGP Commands                                    | 2Hrs |
| 14 | Configuring IBGP and EBGP Sessions,                       | 2Hrs |
| 15 | Inter-VLAN Routing                                        | 2Hrs |

- 1. Big Data and Analytics: Subhashini Chellappan Seema Acharya, Wiley, First
- 2. Data Analytics with Hadoop An Introduction for Data Scientists: Benjamin Bengfort and Jenny Kim, O'Reilly, 2016
- 3. Big Data and Hadoop: V.K Jain, Khanna Publishing, First, 2018
- 4. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud William Stallings AddisonWesley
- 5. Network Functions Virtualization (NFV) with a Touch of SDN Rajendra Chayapathi Syed Farrukh Hassan AddisonWesley

| Course Description: M.Sc. (Information Technology) |                            |  |
|----------------------------------------------------|----------------------------|--|
| Semester                                           | II                         |  |
| Course Name                                        | Microservices Architecture |  |
| Course Code                                        | PIT2MAT                    |  |
| Credit                                             | 4                          |  |
| Hours                                              | 4 Hrs per week             |  |

## **Elective I**

| <b>Course Objectives</b> | Gain a thorough understanding of the philosophy and          |
|--------------------------|--------------------------------------------------------------|
| Course Objectives        |                                                              |
|                          | architecture of Web applications using ASP.NET Core MVC;     |
|                          | Acquire a working knowledge of Web application development   |
|                          | using ASP.NET Core MVC 6 and Visual Studio Persist data with |
|                          | XML Serialization and ADO.NET with SQL Server Create         |
|                          | HTTP services using ASP.NET Core Web API                     |

| <b>Course Outcomes</b> | After completing the course, Student will be able to:                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
|                        | 1) Define Micro services Architecture & Micro services<br>Boundaries. Elaborate Service Design and Micro Services |
|                        | in Practice                                                                                                       |
|                        | 2) Explain ASP.Net Core, Docker and Continuous                                                                    |
|                        | Integration                                                                                                       |
|                        | 3) Explain Data Services & Micro Services Ecosystems                                                              |
|                        | 4) Create Data Services                                                                                           |

| Module/<br>Unit | Course Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs.  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ι               | Microservices: Understanding Microservices, Adopting Microservices,<br>The Microservices Way. Microservices Value Proposition: Deriving<br>Business Value, defining a Goal Oriented, Layered Approach, Applying<br>the Goal-Oriented, Layered Approach. Designing Microservice<br>Systems: The Systems Approach to Microservices, A Microservices<br>Design Process, Establishing a Foundation: Goals and Principles,<br>Platforms, Culture.<br>Service Design: Microservice Boundaries, API design for<br>Microservices, Data and Microservices, Distributed Transactions and | 15Hrs |

M.Sc. Part I, Information Technology Syllabus

| 111501 I wit I, | Information Technology Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 | Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| II              | <b>System Design and Operations</b> : Independent Deployability, More<br>Servers, Docker and Microservices, Role of Service Discovery, Need<br>for an API Gateway, Monitoring and Alerting. Adopting Microservices<br>in Practice: Solution Architecture Guidance, Organizational Guidance,<br>Culture Guidance, Tools and Process Guidance, Services Guidance.<br><b>Building Microservices with ASP.NET Core</b> : Introduction, Installing<br>.NET Core, Building a Console App, Building ASP.NET Core App.<br>Delivering Continuously: Introduction to Docker, Continuous<br>integration with Wercker, Continuous Integration with Circle CI,<br>Deploying to Dicker Hub. | 15Hrs |
| III             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| IV              | Creating Data Service: Choosing a Data Store, Building a Postgres<br>Repository, Databases are Backing Services, Integration Testing Real<br>Repositories, Exercise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15hrs |

- 1. Building Microservices with ASP.NET Core ,Kevin Hoffman ,O'Reilly
- Building Microservices: Designing Fine-Grained Systems, Sam Newman ,O'Reilly
   Production-ready Microservices, Susan J. Fowler, O'Reilly

## **Elective II**

| Course Description: B.Sc. (Information Technology) |                |  |
|----------------------------------------------------|----------------|--|
| Semester                                           | II             |  |
| Course Name                                        | Data Security  |  |
| Course Code                                        | PIT2DST        |  |
| Credit                                             | 2              |  |
| Hours                                              | 4 Hrs per week |  |

| <b>Course Objectives</b> | To understand the secure storage, control access and prevent |
|--------------------------|--------------------------------------------------------------|
| _                        | unauthorized processing, transfer, or deletion of data.      |

| Course Outcomes | After completing the course, Student will be able to:        |
|-----------------|--------------------------------------------------------------|
|                 | 5) Define Data security and cryptographic techniques.        |
|                 | 6) Classify the types of attacks and their common prevention |
|                 | mechanisms.                                                  |
|                 | 7) Explain program security and time to time checkups.       |
|                 | 8) Examine security in networks & firewalls.                 |

| Module/ Course Description |                                                                                                                                                                                                                                                                             | Hrs.  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit                       | t                                                                                                                                                                                                                                                                           |       |
| Ι                          | Introduction to Data Security : Attacks, Vulnerability,Security<br>Goals, Security Services and mechanisms Conventional<br>Cryptographic Techniques : Conventional substitution and<br>ransposition ciphers, One-time Pad, Block cipher and Stream<br>Cipher, Steganography | 15hrs |
| II                         | Symmetric and Asymmetric Cryptographic Techniques : DES,<br>AES, RSA algorithms<br>Authentication and Digital Signatures : Use of Cryptography for<br>authentication                                                                                                        | 15hrs |
| III                        | Program Security : Nonmalicious Program errors – Buffer overflow,<br>Incomplete mediation, Time-of-check to Time-of-use Errors,<br>Viruses, Trapdoors, Salami attack, Man-in-the-middle attacks,<br>Covert channels                                                         | 15hrs |
| IV                         | Security in Networks : Threats in networks, Network Security<br>Controls – Architecture, Encryption, Content Integrity, Strong                                                                                                                                              | 15hrs |

| Authentication, Access Controls, Wireless Security, Honeypots,   |
|------------------------------------------------------------------|
| Traffic flow security, Firewalls – Design and Types of Firewalls |

- 1. Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education
- 2. Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson
- 3. Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- 4. Network Security, Essentials: Applications and Standards, by William Stallings.

| Course Description: M.Sc.(Information Technology) |                                                                                           |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Semester                                          | II                                                                                        |  |
| Course Name                                       | Practical of Microservices<br>Architectures + Practical of<br>Natural Language Processing |  |
| Course Code                                       | PIT2PR2                                                                                   |  |
| Credit                                            | 1                                                                                         |  |
| Hours                                             | 2 Hrs per week                                                                            |  |

| Course Objectives | <ul> <li>To understand Natural Language Processing concepts by doing programs on basic concepts and algorithmic description of Morphology, Syntax, Semantics, and Pragmatics &amp; Discourse analysis.</li> <li>Gain a practical understanding of.NET Core; Deploy</li> </ul> |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | ASP.NET Core MVC applications to the Windows Azure cloud.                                                                                                                                                                                                                     |

| Course Outcomes | After completing the course, Student will be able to:                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <ol> <li>Define Micro services Architecture &amp; Micro services<br/>Boundaries, Elaborate Service Design and Micro Services<br/>in Practice</li> </ol> |
|                 | 2) Explain ASP.Net Core, Docker and Continuous<br>Integration                                                                                           |
|                 | <ol> <li>Apply various text pre-processing techniques and N-<br/>Gram Model for any given text.</li> </ol>                                              |
|                 | <ol> <li>Develop morphological analysis, grammar checker<br/>word generation and different POS taggers.</li> </ol>                                      |

| Module/<br>Unit | Course Description                    | Hrs  |
|-----------------|---------------------------------------|------|
| 1               | Installing Visual studio .Net         | 2hrs |
| 2               | Building APT.NET Core MVC Application | 2hrs |

M.Sc. Part I, Information Technology Syllabus

| M.Sc. Part I, Information Technology Syllabus |                                                                             |      |  |
|-----------------------------------------------|-----------------------------------------------------------------------------|------|--|
| 3                                             | Building ASP.NET Core REST API.                                             | 2hrs |  |
| 4                                             | Installing Docker                                                           | 2hrs |  |
| 5                                             | Working with Docker, Docker Commands.                                       | 2hrs |  |
| 6                                             | Working with Docker Images and Containers.                                  | 2hrs |  |
| 7                                             | Creating Microservice with ASP.NET Core                                     | 2hrs |  |
| 8                                             | Installing Docker Toolbox                                                   | 2hrs |  |
| 9                                             | Write a program to implement sentence segmentation and word<br>Tokenization | 2hrs |  |
| 10                                            | Write a program to Implement stemming and lemmatization.                    | 2hrs |  |
| 11                                            | Write a program to Implement a tri-gram model                               | 2hrs |  |
| 12                                            | Write a program to Implement PoS tagging using HMM & Neural Model.          | 2hrs |  |
| 13                                            | Write a program to Implement syntactic parsing of a given text              | 2hrs |  |
| 14                                            | Write a program to Implement dependency parsing of a given text.            | 2hrs |  |
| 15                                            | Write a program to Implement Named Entity Recognition (NER)                 | 2hrs |  |

- 1) Sentiment Analysis and Opinion Mining, Bing Liu, Morgan & Claypool Publishers, May 2012.
- 2) Speech and Language Processing (3rd ed. draft) Dan Jurafsky and James H. Martin
- 3) Natural Language Understanding 2nd Edition, James Allen (Author), Pearson
- 4) Building Microservices with ASP.NET Core, Kevin Hoffman, O'Reilly
- 5) Building Microservices: Designing Fine-Grained Systems, Sam Newman ,O'Reilly
- 6) Production-ready Microservices, Susan J. Fowler, O'Reilly